Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.701
Filter
2.
J Gen Virol ; 105(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38656455

ABSTRACT

Porcine epidemic diarrhea (PED) is a serious disease in piglets that leads to high mortality. An effective measure that provides higher IgA levels in the intestine and milk is required to decrease losses. Porcine epidemic diarrhea virus (PEDV) was dissolved in calcium alginate (Alg) and combined with chitosan (CS) via electrostatic interactions between cationic chitosan and anionic alginate to create a porous gel (Alg-CS+PEDV). The gel was used to immunize mice orally or in combination with subcutaneous injections of inactivated PEDV vaccine. At 12 and 24 days after immunization, levels of IgA and IgG in Alg-CS+PEDV were higher than with normal PEDV oral administration. At 24 days after immunization, the concentration of IFN-γ in Alg-CS+PEDV was higher than with normal PEDV oral administration. Furthermore, oral administration combining subcutaneous immunization induced higher levels of IgG and IgA than oral administration alone. Our study provides a new method for the preparation and administration of oral vaccines to achieve enhanced mucosal immunity against PEDV.


Subject(s)
Alginates , Antibodies, Viral , Chitosan , Immunity, Mucosal , Immunoglobulin A , Immunoglobulin G , Porcine epidemic diarrhea virus , Viral Vaccines , Animals , Administration, Oral , Porcine epidemic diarrhea virus/immunology , Alginates/administration & dosage , Chitosan/administration & dosage , Mice , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Antibodies, Viral/immunology , Immunoglobulin A/immunology , Immunoglobulin G/blood , Swine , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology , Swine Diseases/immunology , Swine Diseases/prevention & control , Swine Diseases/virology , Female , Gels/administration & dosage , Mice, Inbred BALB C , Interferon-gamma/immunology , Glucuronic Acid/administration & dosage , Hexuronic Acids/administration & dosage
3.
Funct Integr Genomics ; 24(3): 79, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38653845

ABSTRACT

Coronaviruses have been identified as pathogens of gastrointestinal and respiratory diseases in humans and various animal species. In recent years, the global spread of new coronaviruses has had profound influences for global public health and economies worldwide. As highly pathogenic zoonotic viruses, coronaviruses have become the focus of current research. Porcine Deltacoronavirus (PDCoV), an enterovirus belonging to the family of coronaviruses, has emerged on a global scale in the past decade and significantly influenced the swine industry. Moreover, PDCoV infects not only pigs but also other species, including humans, chickens and cattles, exhibiting a broad host tropism. This emphasizes the need for in-depth studies on coronaviruses to mitigate their potential threats. In this review, we provided a comprehensive summary of the current studies on PDCoV. We first reviewed the epidemiological investigations on the global prevalence and distribution of PDCoV. Then, we delved into the studies on the pathogenesis of PDCoV to understand the mechanisms how the virus impacts its hosts. Furthermore, we also presented some exploration studies on the immune evasion mechanisms of the virus to enhance the understanding of host-virus interactions. Despite current limitations in vaccine development for PDCoV, we highlighted the inhibitory effects observed with certain substances, which offers a potential direction for future research endeavors. In conclusion, this review summarized the scientific findings in epidemiology, pathogenesis, immune evasion mechanisms and vaccine development of PDCoV. The ongoing exploration of potential vaccine candidates and the insights gained from inhibitory substances have provided a solid foundation for future vaccine development to prevent and control diseases associated with PDCoV.


Subject(s)
Coronavirus Infections , Deltacoronavirus , Immune Evasion , Swine Diseases , Viral Vaccines , Animals , Swine , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Coronavirus Infections/epidemiology , Deltacoronavirus/pathogenicity , Deltacoronavirus/immunology , Deltacoronavirus/genetics , Swine Diseases/virology , Swine Diseases/immunology , Swine Diseases/prevention & control , Swine Diseases/epidemiology , Viral Vaccines/immunology , Vaccine Development , Humans
4.
Front Immunol ; 15: 1367253, 2024.
Article in English | MEDLINE | ID: mdl-38646533

ABSTRACT

Bovine respiratory disease (BRD) is one of the most common diseases in the cattle industry worldwide; it is caused by multiple bacterial or viral coinfections, of which Mycoplasma bovis (M. bovis) and bovine herpesvirus type 1 (BoHV-1) are the most notable pathogens. Although live vaccines have demonstrated better efficacy against BRD induced by both pathogens, there are no combined live and marker vaccines. Therefore, we developed an attenuated and marker M. bovis-BoHV-1 combined vaccine based on the M. bovis HB150 and BoHV-1 gG-/tk- strain previously constructed in our lab and evaluated in rabbits. This study aimed to further evaluate its safety and protective efficacy in cattle using different antigen ratios. After immunization, all vaccinated cattle had a normal rectal temperature and mental status without respiratory symptoms. CD4+, CD8+, and CD19+ cells significantly increased in immunized cattle and induced higher humoral and cellular immune responses, and the expression of key cytokines such as IL-4, IL-12, TNF-α, and IFN-γ can be promoted after vaccination. The 1.0 × 108 CFU of M. bovis HB150 and 1.0 × 106 TCID50 BoHV-1 gG-/tk- combined strain elicited the most antibodies while significantly increasing IgG and cellular immunity after challenge. In conclusion, the M. bovis HB150 and BoHV-1 gG-/tk- combined strain was clinically safe and protective in calves; the mix of 1.0 × 108 CFU of M. bovis HB150 and 1.0 × 106 TCID50 BoHV-1 gG-/tk- strain was most promising due to its low amount of shedding and highest humoral and cellular immune responses compared with others. This study introduces an M. bovis-BoHV-1 combined vaccine for application in the cattle industry.


Subject(s)
Herpesvirus 1, Bovine , Mycoplasma bovis , Vaccines, Attenuated , Vaccines, Combined , Animals , Cattle , Herpesvirus 1, Bovine/immunology , Vaccines, Combined/immunology , Vaccines, Combined/administration & dosage , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , Mycoplasma bovis/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/adverse effects , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/adverse effects , Cytokines/metabolism , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Mycoplasma Infections/prevention & control , Mycoplasma Infections/veterinary , Mycoplasma Infections/immunology , Vaccines, Marker/immunology , Vaccines, Marker/administration & dosage , Vaccination/veterinary , Vaccine Efficacy , Immunity, Humoral , Bovine Respiratory Disease Complex/prevention & control , Bovine Respiratory Disease Complex/immunology , Bovine Respiratory Disease Complex/virology
5.
Cell ; 187(6): 1360-1362, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38490180

ABSTRACT

The mpox outbreak in 2022 launched a vaccination campaign employing an existing vaccine with moderate protection, highlighting the lack of scalable Orthopoxvirus vaccines with optimal protection. In this issue of Cell, Zuiani et al. report pre-clinical findings of an mRNA-based mpox vaccine, paving the way for Phase I/II clinical trials.


Subject(s)
Smallpox Vaccine , Viral Vaccines , mRNA Vaccines , Animals , Monkeypox virus/immunology , mRNA Vaccines/immunology , Primates , Smallpox Vaccine/immunology , Viral Vaccines/immunology
6.
Microb Pathog ; 190: 106630, 2024 May.
Article in English | MEDLINE | ID: mdl-38556102

ABSTRACT

Porcine circovirus type 2 (PCV2) is a globally prevalent infectious pathogen affecting swine, with its capsid protein (Cap) being the sole structural protein critical for vaccine development. Prior research has demonstrated that PCV2 Cap proteins produced in Escherichia coli (E. coli) can form virus-like particles (VLPs) in vitro, and nuclear localization signal peptides (NLS) play a pivotal role in stabilizing PCV2 VLPs. Recently, PCV2d has emerged as an important strain within the PCV2 epidemic. In this study, we systematically optimized the PCV2d Cap protein and successfully produced intact PCV2d VLPs containing NLS using E. coli. The recombinant PCV2d Cap protein was purified through affinity chromatography, yielding 7.5 mg of recombinant protein per 100 ml of bacterial culture. We augmented the conventional buffer system with various substances such as arginine, ß-mercaptoethanol, glycerol, polyethylene glycol, and glutathione to promote VLP assembly. The recombinant PCV2d Cap self-assembled into VLPs approximately 20 nm in diameter, featuring uniform distribution and exceptional stability in the optimized buffer. We developed the vaccine and immunized pigs and mice, evaluating the immunogenicity of the PCV2d VLPs vaccine by measuring PCV2-IgG, IL-4, TNF-α, and IFN-γ levels, comparing them to commercial vaccines utilizing truncated PCV2 Cap antigens. The HE staining and immunohistochemical tests confirmed that the PCV2 VLPs vaccine offered robust protection. The results revealed that animals vaccinated with the PCV2d VLPs vaccine exhibited high levels of PCV2 antibodies, with TNF-α and IFN-γ levels rapidly increasing at 14 days post-immunization, which were higher than those observed in commercially available vaccines, particularly in the mouse trial. This could be due to the fact that full-length Cap proteins can assemble into more stable PCV2d VLPs in the assembling buffer. In conclusion, our produced PCV2d VLPs vaccine elicited stronger immune responses in pigs and mice compared to commercial vaccines. The PCV2d VLPs from this study serve as an excellent candidate vaccine antigen, providing insights for PCV2d vaccine research.


Subject(s)
Antibodies, Viral , Capsid Proteins , Circovirus , Escherichia coli , Recombinant Proteins , Vaccines, Virus-Like Particle , Animals , Circovirus/immunology , Circovirus/genetics , Swine , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/genetics , Capsid Proteins/immunology , Capsid Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Mice , Antibodies, Viral/immunology , Antibodies, Viral/blood , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Circoviridae Infections/prevention & control , Circoviridae Infections/immunology , Swine Diseases/prevention & control , Viral Vaccines/immunology , Viral Vaccines/genetics , Vaccine Development , Antigens, Viral/immunology , Antigens, Viral/genetics , Immunoglobulin G/blood , Cost-Benefit Analysis , Female , Interferon-gamma/metabolism , Immunogenicity, Vaccine
7.
Cell ; 187(4): 813-813.e1, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38364787

ABSTRACT

Although Chikungunya fever does not a have a high fatality rate (<10%), it has a huge morbidity toll due to lingering chronic arthralgia. The recent FDA approval of Ixchiq, a vaccine designed to prevent infection caused by the chikungunya virus (CHIKV), provides hope that its use can prevent future CHIKV outbreaks. To view this Bench to Bedside, open or download the PDF.


Subject(s)
Chikungunya Fever , Chikungunya virus , Viral Vaccines , Humans , Chikungunya Fever/immunology , Chikungunya virus/physiology , Disease Outbreaks , Vaccines, Attenuated , Viral Vaccines/immunology
8.
J Mol Biol ; 436(4): 168446, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38242283

ABSTRACT

Adjuvants are vaccine components that can boost the type, magnitude, breadth, and durability of an immune response. We have previously demonstrated that certain adjuvant combinations can act synergistically to enhance and shape immunogenicity including promotion of Th1 and cytotoxic T-cell development. These combinations also promoted protective immunity in vulnerable populations such as newborns. In this study, we employed combined antigen-specific human in vitro models to identify adjuvant combinations that could synergistically promote the expansion of vaccine-specific CD4+ cells, induce cross-presentation on MHC class I, resulting in antigen-specific activation of CD8+ cells, and direct the balance of immune response to favor the production of Th1-promoting cytokines. A screen of 78 adjuvant combinations identified several T cell-potentiating adjuvant combinations. Remarkably, a combination of TLR9 and STING agonists (CpG + 2,3-cGAMP) promoted influenza-specific CD4+ and CD8+ T cell activation and selectively favored production of Th1-polarizing cytokines TNF and IL-12p70 over co-regulated cytokines IL-6 and IL-12p40, respectively. Phenotypic reprogramming towards cDC1-type dendritic cells by CpG + 2,3-cGAMP was also observed. Finally, we characterized the molecular mechanism of this adjuvant combination including the ability of 2,3-cGAMP to enhance DC expression of TLR9 and the dependency of antigen-presenting cell activation on the Sec22b protein important to endoplasmic reticulum-Golgi vesicle trafficking. The identification of the adjuvant combination CpG + 2,3-cGAMP may therefore prove key to the future development of vaccines against respiratory viral infections tailored for the functionally distinct immune systems of vulnerable populations such as older adults and newborns.


Subject(s)
Adjuvants, Immunologic , Cross-Priming , Th1 Cells , Vaccine Development , Viral Vaccines , Humans , Infant, Newborn , Adjuvants, Immunologic/pharmacology , Cross-Priming/drug effects , Cytokines/metabolism , Dendritic Cells/immunology , Toll-Like Receptor 9 , Th1 Cells/immunology , Adolescent , Young Adult , Viral Vaccines/immunology
9.
J Virol ; 98(2): e0162323, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38193692

ABSTRACT

Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus responsible for adult T-cell leukemia/lymphoma, a severe and fatal CD4+ T-cell malignancy. Additionally, HTLV-1 can lead to a chronic progressive neurodegenerative disease known as HTLV-1-associated myelopathy/tropical spastic paraparesis. Unfortunately, the prognosis for HTLV-1-related diseases is generally poor, and effective treatment options are limited. In this study, we designed and synthesized a codon optimized HTLV-1 envelope (Env) mRNA encapsulated in a lipid nanoparticle (LNP) and evaluated its efficacy as a vaccine candidate in an established rabbit model of HTLV-1 infection and persistence. Immunization regimens included a prime/boost protocol using Env mRNA-LNP or control green fluorescent protein (GFP) mRNA-LNP. After immunization, rabbits were challenged by intravenous injection with irradiated HTLV-1 producing cells. Three rabbits were partially protected and three rabbits were completely protected against HTLV-1 challenge. These rabbits were then rechallenged 15 weeks later, and two rabbits maintained sterilizing immunity. In Env mRNA-LNP immunized rabbits, proviral load and viral gene expression were significantly lower. After viral challenge in the Env mRNA-LNP vaccinated rabbits, an increase in both CD4+/IFN-γ+ and CD8+/IFN-γ+ T-cells was detected when stimulating with overlapping Env peptides. Env mRNA-LNP elicited a detectable anti-Env antibody response after prime/boost vaccination in all animals and significantly higher levels of neutralizing antibody activity. Neutralizing antibody activity was correlated with a reduction in proviral load. These findings hold promise for the development of preventive strategies and therapeutic interventions against HTLV-1 infection and its associated diseases.IMPORTANCEmRNA vaccine technology has proven to be a viable approach for effectively triggering immune responses that protect against or limit viral infections and disease. In our study, we synthesized a codon optimized human T-cell leukemia virus type 1 (HTLV-1) envelope (Env) mRNA that can be delivered in a lipid nanoparticle (LNP) vaccine approach. The HTLV-1 Env mRNA-LNP produced protective immune responses against viral challenge in a preclinical rabbit model. HTLV-1 is primarily transmitted through direct cell-to-cell contact, and the protection offered by mRNA vaccines in our rabbit model could have significant implications for optimizing the development of other viral vaccine candidates. This is particularly important in addressing the challenge of enhancing protection against infections that rely on cell-to-cell transmission.


Subject(s)
Human T-lymphotropic virus 1 , Viral Vaccines , mRNA Vaccines , Animals , Humans , Rabbits , Antibodies, Neutralizing , Antibody Formation , Codon , Human T-lymphotropic virus 1/physiology , Leukemia, T-Cell , mRNA Vaccines/immunology , Neurodegenerative Diseases , RNA, Messenger/genetics , Viral Vaccines/immunology
10.
J Virol ; 98(2): e0165023, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38271227

ABSTRACT

Vaccination is the most effective method to protect humans and animals from diseases. Anti-idiotype vaccines are safer due to their absence of pathogens. However, the commercial production of traditional anti-idiotype vaccines using monoclonal and polyclonal antibodies (mAb and pAb) is complex and has a high failure rate. The present study designed a novel, simple, low-cost strategy for developing anti-idiotype vaccines with nanobody technology. We used porcine circovirus type 2 (PCV2) as a viral model, which can result in serious economic loss in the pig industry. The neutralizing mAb-1E7 (Ab1) against PCV2 capsid protein (PCV2-Cap) was immunized in the camel. And 12 nanobodies against mAb-1E7 were screened. Among them, Nb61 (Ab2) targeted the idiotype epitope of mAb-1E7 and blocked mAb-1E7's binding to PCV2-Cap. Additionally, a high-dose Nb61 vaccination can also protect mice and pigs from PCV2 infection. Epitope mapping showed that mAb-1E7 recognized the 75NINDFL80 of PCV2-Cap and 101NYNDFLG107 of Nb61. Subsequently, the mAb-3G4 (Ab3) against Nb61 was produced and can neutralize PCV2 infection in the PK-15 cells. Structure analysis showed that the amino acids of mAb-1E7 and mAb-3G4 respective binding to PCV2-Cap and Nb61 were also similar on the amino acids sequences and spatial conformation. Collectively, our study first provided a strategy for producing nanobody-based anti-idiotype vaccines and identified that anti-idiotype nanobodies could mimic the antigen on amino acids and structures. Importantly, as more and more neutralization mAbs against different pathogens are prepared, anti-idiotype nanobody vaccines can be easily produced against the disease with our strategy, especially for dangerous pathogens.IMPORTANCEAnti-idiotype vaccines utilize idiotype-anti-idiotype network theory, eliminating the need for external antigens as vaccine candidates. Especially for dangerous pathogens, they were safer because they did not contact the live pathogenic microorganisms. However, developing anti-idiotype vaccines with traditional monoclonal and polyclonal antibodies is complex and has a high failure rate. We present a novel, universal, simple, low-cost strategy for producing anti-idiotype vaccines with nanobody technology. Using a neutralization antibody against PCV2-Cap, a nanobody (Ab2) was successfully produced and could mimic the neutralizing epitope of PCV2-Cap. The nanobody can induce protective immune responses against PCV2 infection in mice and pigs. It highlighted that the anti-idiotype vaccine using nanobody has a very good application in the future, especially for dangerous pathogens.


Subject(s)
Circoviridae Infections , Circovirus , Single-Domain Antibodies , Viral Vaccines , Animals , Humans , Mice , Capsid Proteins , Circoviridae Infections/prevention & control , Circoviridae Infections/veterinary , Epitopes , Swine , Viral Vaccines/chemistry , Viral Vaccines/immunology
11.
J Virol ; 97(12): e0119323, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37971221

ABSTRACT

IMPORTANCE: Coronaviruses are important pathogens of humans and animals, and vaccine developments against them are imperative. Due to the ability to induce broad and prolonged protective immunity and the convenient administration routes, live attenuated vaccines (LAVs) are promising arms for controlling the deadly coronavirus infections. However, potential recombination events between vaccine and field strains raise a safety concern for LAVs. The porcine epidemic diarrhea virus (PEDV) remodeled TRS (RMT) mutant generated in this study replicated efficiently in both cell culture and in pigs and retained protective immunogenicity against PEDV challenge in pigs. Furthermore, the RMT PEDV was resistant to recombination and genetically stable. Therefore, RMT PEDV can be further optimized as a backbone for the development of safe LAVs.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Recombination, Genetic , Swine Diseases , Swine , Vaccines, Attenuated , Viral Vaccines , Animals , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/growth & development , Porcine epidemic diarrhea virus/immunology , Swine/immunology , Swine/virology , Swine Diseases/immunology , Swine Diseases/prevention & control , Swine Diseases/virology , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Viral Vaccines/genetics , Viral Vaccines/immunology , Virus Replication , Cells, Cultured , Mutation
12.
J Virol ; 97(12): e0105223, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38032197

ABSTRACT

IMPORTANCE: Human metapneumovirus (hMPV) is a common pathogen causing lower respiratory tract infections worldwide and can develop severe symptoms in high-risk populations such as infants, the elderly, and immunocompromised patients. There are no approved hMPV vaccines or neutralizing antibodies available for therapeutic or prophylactic use. The trimeric hMPV fusion F protein is the major target of neutralizing antibodies in human sera. Understanding the immune recognition of antibodies to hMPV-F antigen will provide critical insights into developing efficacious hMPV monoclonal antibodies and vaccines.


Subject(s)
Metapneumovirus , Paramyxoviridae Infections , Aged , Humans , Antibodies, Neutralizing , Antibodies, Viral , Epitopes , Metapneumovirus/physiology , Paramyxoviridae Infections/immunology , Viral Fusion Proteins , Viral Vaccines/immunology
13.
J Virol ; 97(11): e0079523, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37902401

ABSTRACT

IMPORTANCE: African swine fever virus (ASFV), the only known DNA arbovirus, is the causative agent of African swine fever (ASF), an acutely contagious disease in pigs. ASF has recently become a crisis in the pig industry in recent years, but there are no commercially available vaccines. Studying the immune evasion mechanisms of ASFV proteins is important for the understanding the pathogenesis of ASFV and essential information for the development of an effective live-attenuated ASFV vaccines. Here, we identified ASFV B175L, previously uncharacterized proteins that inhibit type I interferon signaling by targeting STING and 2'3'-cGAMP. The conserved B175L-zf-FCS motif specifically interacted with both cGAMP and the R238 and Y240 amino acids of STING. Consequently, this interaction interferes with the interaction of cGAMP and STING, thereby inhibiting downstream signaling of IFN-mediated antiviral responses. This novel mechanism of B175L opens a new avenue as one of the ASFV virulent genes that can contribute to the advancement of ASFV live-attenuated vaccines.


Subject(s)
African Swine Fever Virus , African Swine Fever , Interferon Type I , Membrane Proteins , Nucleotides, Cyclic , Swine , Viral Proteins , Animals , African Swine Fever/immunology , African Swine Fever/virology , African Swine Fever Virus/chemistry , African Swine Fever Virus/genetics , African Swine Fever Virus/immunology , African Swine Fever Virus/pathogenicity , Interferon Type I/antagonists & inhibitors , Interferon Type I/immunology , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Nucleotides, Cyclic/antagonists & inhibitors , Nucleotides, Cyclic/metabolism , Swine/immunology , Swine/virology , Vaccines, Attenuated/immunology , Viral Proteins/metabolism , Viral Vaccines/immunology , Host Microbial Interactions
14.
J Virol ; 97(11): e0132223, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37882519

ABSTRACT

IMPORTANCE: Chickens immunized with the infectious laryngotracheitis chicken embryo origin (CEO) vaccine (Medivac, PT Medion Farma Jaya) experience adverse reactions, hindering its safety and effective use in poultry flocks. To improve the effect of the vaccine, we sought to find a strategy to alleviate the respiratory reactions associated with the vaccine. Here, we confirmed that co-administering the CEO vaccine with chIL-2 by oral delivery led to significant alleviation of the vaccine reactions in chickens after immunization. Furthermore, we found that the co-administration of chIL-2 with the CEO vaccine reduced the clinical signs of the CEO vaccine while enhancing natural killer cells and cytotoxic T lymphocyte response to decrease viral loads in their tissues, particularly in the trachea and conjunctiva. Importantly, we demonstrated that the chIL-2 treatment can ameliorate the replication of the CEO vaccine without compromising its effectiveness. This study provides new insights into further applications of chIL-2 and a promising strategy for alleviating the adverse reaction of vaccines.


Subject(s)
Chickens , Herpesviridae Infections , Herpesvirus 1, Gallid , Interleukin-2 , Killer Cells, Natural , T-Lymphocytes, Cytotoxic , Viral Vaccines , Animals , Administration, Oral , Chickens/immunology , Chickens/virology , Conjunctiva/virology , Herpesviridae Infections/immunology , Herpesviridae Infections/prevention & control , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Herpesvirus 1, Gallid/immunology , Interleukin-2/administration & dosage , Interleukin-2/immunology , Killer Cells, Natural/immunology , Poultry Diseases/immunology , Poultry Diseases/prevention & control , Poultry Diseases/virology , Respiratory Tract Diseases/immunology , Respiratory Tract Diseases/prevention & control , Respiratory Tract Diseases/veterinary , Respiratory Tract Diseases/virology , T-Lymphocytes, Cytotoxic/immunology , Trachea/virology , Viral Load , Viral Vaccines/administration & dosage , Viral Vaccines/adverse effects , Viral Vaccines/biosynthesis , Viral Vaccines/immunology
15.
J Virol ; 97(10): e0093823, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37792003

ABSTRACT

IMPORTANCE: Human norovirus (HuNoV) is highly infectious and can result in severe illnesses in the elderly and children. So far, there is no effective antiviral drug to treat HuNoV infection, and thus, the development of HuNoV vaccines is urgent. However, NoV evolves rapidly, and currently, at least 10 genogroups with numerous genotypes have been found. The genetic diversity of NoV and the lack of cross-protection between different genotypes pose challenges to the development of broadly protective vaccines. In this study, guided by structural alignment between GI.1 and GII.4 HuNoV VP1 proteins, several chimeric-type virus-like particles (VLPs) were designed through surface-exposed loop grafting. Mouse immunization studies show that two of the designed chimeric VLPs induced cross-immunity against both GI.1 and GII.4 HuNoVs. To our knowledge, this is the first designed chimeric VLPs that can induce cross-immune activities across different genogroups of HuNoV, which provides valuable strategies for the development of cross-reactive HuNoV vaccines.


Subject(s)
Caliciviridae Infections , Epitopes , Genotype , Norovirus , Viral Vaccines , Virion , Animals , Humans , Mice , Caliciviridae Infections/immunology , Caliciviridae Infections/prevention & control , Caliciviridae Infections/virology , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Immunization , Norovirus/chemistry , Norovirus/classification , Norovirus/genetics , Norovirus/immunology , Viral Vaccines/chemistry , Viral Vaccines/genetics , Viral Vaccines/immunology , Chimera/genetics , Chimera/immunology , Capsid Proteins/chemistry , Capsid Proteins/genetics , Capsid Proteins/immunology , Virion/chemistry , Virion/genetics , Virion/immunology
17.
Nature ; 622(7984): 818-825, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37821700

ABSTRACT

Effective pandemic preparedness relies on anticipating viral mutations that are able to evade host immune responses to facilitate vaccine and therapeutic design. However, current strategies for viral evolution prediction are not available early in a pandemic-experimental approaches require host polyclonal antibodies to test against1-16, and existing computational methods draw heavily from current strain prevalence to make reliable predictions of variants of concern17-19. To address this, we developed EVEscape, a generalizable modular framework that combines fitness predictions from a deep learning model of historical sequences with biophysical and structural information. EVEscape quantifies the viral escape potential of mutations at scale and has the advantage of being applicable before surveillance sequencing, experimental scans or three-dimensional structures of antibody complexes are available. We demonstrate that EVEscape, trained on sequences available before 2020, is as accurate as high-throughput experimental scans at anticipating pandemic variation for SARS-CoV-2 and is generalizable to other viruses including influenza, HIV and understudied viruses with pandemic potential such as Lassa and Nipah. We provide continually revised escape scores for all current strains of SARS-CoV-2 and predict probable further mutations to forecast emerging strains as a tool for continuing vaccine development ( evescape.org ).


Subject(s)
Evolution, Molecular , Forecasting , Immune Evasion , Mutation , Pandemics , Viruses , Humans , Drug Design , HIV Infections , Immune Evasion/genetics , Immune Evasion/immunology , Influenza, Human , Lassa virus , Nipah Virus , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Viral Vaccines/immunology , Viruses/genetics , Viruses/immunology
20.
J Virol ; 97(10): e0070423, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37768081

ABSTRACT

IMPORTANCE: African swine fever (ASF) caused by ASF virus (ASFV) is a highly contagious and acute hemorrhagic viral disease in domestic pigs. Until now, no effective commercial vaccine and antiviral drugs are available for ASF control. Here, we generated a new live-attenuated vaccine candidate (ASFV-ΔH240R-Δ7R) by deleting H240R and MGF505-7R genes from the highly pathogenic ASFV HLJ/18 genome. Piglets immunized with ASFV-ΔH240R-Δ7R were safe without any ASF-related signs and produced specific antibodies against p30. Challenged with a virulent ASFV HLJ/18, the piglets immunized with high-dose group (105 HAD50) exhibited 100% protection without clinical symptoms, showing that low levels of virus replication with no observed pathogenicity by postmortem and histological analysis. Overall, our results provided a new strategy by designing live-attenuated vaccine candidate, resulting in protection against ASFV infection.


Subject(s)
African Swine Fever Virus , Gene Deletion , Genes, Viral , Vaccines, Attenuated , Viral Vaccines , Animals , African Swine Fever/immunology , African Swine Fever/prevention & control , African Swine Fever/virology , African Swine Fever Virus/classification , African Swine Fever Virus/immunology , African Swine Fever Virus/pathogenicity , Sus scrofa/virology , Vaccines, Attenuated/immunology , Viral Proteins/genetics , Viral Vaccines/genetics , Viral Vaccines/immunology , Virulence , Virus Replication , Genes, Viral/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...